

Near-Field Scanning

Searching for Root Causes

Apr. 10, 2018

Emission Scanning

- Sniffer probes are smarter than they look
- Electromagnetic lens: from near-field to far-field
- Susceptibility Scanning
 - Conducted susceptibility: where does ESD current go?
 - Near-field effects of electrostatic discharge events

Emission Scanning

Sniffer Probe

EMI Near-Field Probe

EMI Probes:

- Up to 40 GHz
- Down to 50 kHz

Optional EMI Probes; Choose:

- Size
- Frequency range
- Field Component

EMI Near-Field Scanning

Defect

Y

240 mm

- Concealed object detection
- Non-destructive testing
- Antenna diagnosis

* Wikipedia, P.L. Ransom et al (1971), J.J Lee et al (1988), M. Soumekh (1991), D.M. Sheen et al (2001), B. Janice (2011), H. Kajbaf et al (2013)

Non-faulty arra

Edge element

orner element

Symmetric Differential Microstrip

Full-wave simulation Differential microstrip line Differentially driven @ 10 GHz

Ex @ Z=7.5 mm (λ/4)

Ex @ Z=1 mm (λ/30)

Asymmetric differential microstrip 12 mil gap between GND & line Differentially driven @ 10 GHz

Ex @ Z=1 mm (λ/30)

Wave Propagation

Wave Propagation

* Asymmetric differential microstrip @ 10 GHz

Wave Propagation

* Symmetric differential microstrip @ 10 GHz

* Using Range Migration Algorithm (RMA) or Synthetic Aperture Radar (SAR)

Optional: Calculate Far-Field Pattern Measure at Radiative **Back-Calculate to** Localize Sources **Near-Field DUT** Location Contributing to $(\sim 1-2\lambda$ away from (Phase Adjustment)* **Far-Field** DUT) **Optional:**

 $f(x, y) = F_{2D}^{-1} \left\{ F_{2D} \left\{ s(x, y) e^{-jk_z z_0} \right\} \right\} \quad k_z = \sqrt{k^2 - k_x^2 - k_y^2}$

Emission Source Microscopy (ESM)

amber precision instruments

Calculate TRP

 $f(x, y) = F_{2D}^{-1} \left\{ F_{2D} \left\{ s(x, y) e^{-jk_z z_0} \right\} \right\} \quad k_z = \sqrt{k^2 - k_x^2 - k_y^2}$

* Asymmetric differential microstrip @ 10 GHz, Z=30mm (λ)

* Asymmetric differential microstrip @ 10 GHz, Z=1mm (λ /30)

Ideal Dipole

Focusing Lens at Different Distances

amber precision instruments

Applications of ESM

Measurement Setup:

- The measurement is performed at 8.2 GHz and at 5 cm away from DUT.
- Using VNA and open-ended waveguide used.

ESM Application of Synthetic Aperture Antenna (SAR) to EMC

- Identification of emission source
- FF estimation
- Total radiated power calculation

Focused Image

Applications of ESM

Applications of ESM

- EMI scanning is a powerful tool for identifying near-field sources.
- Measuring the phase distribution, in addition to magnitude, helps with identifying sources that contribute to far-field using ESM.
- Near-field to far-field transformation and total radiated power estimation are useful applications of phase measurement.

ESD Susceptibility Scanning

Electrostatic Discharge (ESD)

HBM Waveform

* ANSI/ESDA/JEDEC JS-001-2010, MIL-STD-883J Method 3015.9 ** https://www.thermofisher.com/order/catalog/product/CUSPID0000019

HMM Waveform

$$I(t) = \frac{I_1}{k_1} \cdot \frac{\left(\frac{t}{\tau_1}\right)^n}{1 + \left(\frac{t}{\tau_1}\right)^n} \cdot e^{\left(\frac{-t}{\tau_2}\right)} + \frac{I_2}{k_2} \cdot \frac{\left(\frac{t}{\tau_3}\right)^n}{1 + \left(\frac{t}{\tau_3}\right)^n} \cdot e^{\left(\frac{-t}{\tau_4}\right)}$$

* IEC 61000-4-2, ISO 10605, MIL-STD-461G CS118, ANSI/ESD SP5.6-2009

CIPICATION ESD Current Spreading Scanning

apple Current Spreading on Microstrip

28

amber precision instruments Current Spreading on Flex PCB

ANSI/ESD SP14.5-2015

From ESDA: For Electrostatic Discharge Sensitivity Testing – Near-Field Immunity Scanning – Component/Module/PCB Level

> An American National Standard Approved September 14, 2015

ESD scanning technology is widely accepted as a powerful tool for root cause analysis and screening high immunity components, modules and systems

ESD Immunity Scanning

TLP Waveform

 $V_{TLP} = 2 \text{ kV}$ $T_r = 500 \text{ ps}$ $T_f = 33 \text{ ns}$

Current Waveforms: HBM vs HMM vs TLP

HMM vs ANSI/ESD SP14.5-2015 Simple Structure

50 ohms microstrip (3 mm wide trace) Board dimension: 100 x 100 mm² Board elevation from HCP: 1 mm ESD generator distance to board: 10 mm ESD generator setting: 2 kV CD 50 ohms microstrip (3 mm wide trace) Board dimension: 100 x 100 mm² Probe: 2 mm or 5 mm loop H-field Mechanical probe height from trace: 0 mm TLP setting: 2 kV

Field Coupling to Microstrip

H-Field

Surface Current Density

Field Attenuation from ESD

HMM vs Near-Field Injection

amber precision instruments

Effect of IC Fab on ESD

White Paper 3 Part II specifically covers in detail **an overview of system ESD stress app lication methods, system diagnostic techniques to detect hard or soft failures, and the application of tools for susceptibility scanning**. For example, as illustrated in Figure 2, these types of advanced tools can be used to differentiate the characteristics of products and enable proper system protection methodology*.

Figure 2: Susceptibility scanning using pulse techniques on Product A (left) and Product B (right) (Courtesy of Amber Precision Instruments)

* Quote from the ESDA White paper 3, Part II, page 18.
** Product A and Product B are functionally identical ICs from different vendors.

- Conducted susceptibility to an ESD even can be analyzed by measuring and visualizing scanned surface current density on the DUT.
- Susceptibility to near-field effects of an ESD event can be emulated with near-field injection.
- Near-field injection per ANSI/ESD SP14.5-2015 reproduces same failures as IEC 61000-4-2.

Thank You!

Questions?

Contact us: <u>amberpi@amberpi.com</u> <u>www.amberpi.com</u>

References

- Application of Emission Source Microscopy Technique to EMI Source Localization above 5 GHz [Link]
- Emission Source Microscopy Technique for EMI Source Localization [Link]
- EMI Mitigation with Lossy Material at 10 GHz [Link]
- Compressed Sensing for SAR-Based Wideband Three-Dimensional Microwave Imaging System Using Non-Uniform Fast Fourier Transform [Link]
- Introduction to Fourier Optics [Link]
- Synthetic Aperture Radar Signal Processing with MATLAB Algorithms [Link]
- Wikipedia: Synthetic Aperture Radar [Link]